Brammer Standard Company, Inc.

Certificate of Analysis

BS 66L
Certified Reference Material for 1215 Grade Resufurized Steel (UNS Number G12150)

	Certified Value ¹	Estimate of Uncertainty ²		certified ³ information only	
	Analysis listed as	percent by weight	Ana	alysis listed as perce	nt by weight
С	0.065	0.002	В	(<0.0003)	
Mn	0.844	0.007	Ca	(<0.0010)	
Р	0.061	0.002	Nb	(0.0012)	
S	0.315	0.008	Sn	(0.0010)	
Si	0.002	0.0005	Ti	(<0.0010)	
Cu	0.007	0.0006	W	(<0.0010)	
Ni	0.015	0.001			
Cr	0.026	0.002			
Мо	0.0012	0.0004			
ΑI	0.0008	0.0002			
V	0.0006	0.0002			
As	0.0020	0.0005			
Co	0.0035	0.0004			
N	0.0031	0.0007			
Pb	0.0007	0.0002			
Sb	0.0021	0.0004			

See the following pages for more information.

Certificate Number 66L-082009p1

¹ The certified value listed is the present best estimate of the true value based on the results of an interlaboratory testing program.

 $^{^2}$ The uncertainties listed are based on value judgments of the material inhomogeneity and the 95% confidence interval. The half-width confidence interval C(95%) is shown on page 2.

³ Data in parentheses are not certified and are provided for information only.

BS 66L		* cod	e for	analytical	meth	od		analysis	listed	as percer	ıt by	weight						Certificate	e No	o. 66L-0820	009p2	
Analysis	*	С	*	Mn	*	P	*	S	*	Si	*	Cu	*	Ni	*	Cr	*	Мо	*	Al	*	V
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.0605 0.062 0.0628 0.0629 0.0633 0.0635 0.0638 0.0640 0.0641 0.0642 0.0649 0.065 0.065 0.065 0.065 0.065 0.065 0.066 0.066 0.066 0.066 0.066 0.0674 0.068 0.068 0.068	3 7 3 10 3 3 3 3 3 3 3 10 3 3 3 3 3 3 3 3 3	0.836 0.838 0.838 0.839 0.840 0.840 0.8443 0.8447 0.849 0.852 0.853 0.861	3 3 3 3 3 3 3 3 11 3 11 3 3	0.058 0.059 0.0591 0.0594 0.0608 0.061 0.061 0.0614 0.062 0.0621 0.0644 0.0665	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.292 0.292 0.298 0.305 0.306 0.310 0.3112 0.3123 0.313 0.314 0.315 0.3152 0.316 0.317 0.319 0.3204 0.3234 0.3334 0.3417 0.344	3 3 3 3 3 3	0.0016 0.0018 0.002 0.0022 0.0024	3 3 3 3 3 4 4 3 3 7 7 7 7 3 3	0.005 0.0065 0.0067 0.0067 0.0069 0.007 0.007 0.007 0.007 0.0074 0.0074 0.0076 0.008 0.008	3 3 7 3 3 3 7 3 3 3 3 3 3 4 3	0.0129 0.0132 0.0137 0.014 0.0144 0.0146 0.0147 0.015 0.015 0.016 0.016 0.016	3 3 3 7 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	0.0222 0.0236 0.0238 0.0238 0.0249 0.025 0.0251 0.0253 0.026 0.027 0.027 0.027 0.028 0.028	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	0.00045 0.00050 0.0010 0.0014 0.0014 0.0015 0.0015 0.0015		0.0004 0.0006 0.0007 0.0007 0.0008 0.0010 0.0011	3 3 3 7 3 3 3 3 3 3 3 3	0.0002 0.0004 0.0005 0.0006 0.0006 0.0006 0.0007 0.0007
Average		0.0647		0.8440		0.0612		0.3146		0.00200		0.0070		0.0148		0.0255		0.00119		0.00079		0.00056
Std Dev		0.0020		0.0075		0.0023		0.0129		0.00032		0.0007		0.0011		0.0018		0.00043		0.00024		0.00016
Certified		0.065		0.844		0.061		0.315		0.002		0.007		0.015		0.026		0.0012		0.0008		0.0006
t		2.06		2.16		2.18		2.06		2.78		2.14		2.14		2.16		2.26		2.36		2.26
C(95%)		0.0008		0.0043		0.0014		0.0052		0.00039		0.0004		0.0006		0.0010		0.00031		0.00020		0.00011
Data liste	ed a	ıs ppm by	wei	ght (mg/l	kg)																	
Analysis	*	As	*	Со	*	N	*	Pb	*	Sb	*	В	*	Ca	*	Nb	*	Sn	*	Ti	*	W
1 2 3 4 5 6 7 8 9	6 6 6 3 7 3 6 6 6	13.6 13.9 14.0 14.6 21 22 22 24 25 29	7 3 3 7 3 3 7 3 4	30 30 32 33 34 36 36 38 39 40	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	21 25 26 26 27 30 39 40 40 40	3 12 12 12 12 6 6 6 6 7	5.5 5.7 6.2 6.2 7 7 8	12 3 12 12 12 6 6 3 6 6	15 18 19	12 12 11 11 4 3 3	0.6 0.7 0.9 1.0 <0.1 <1 <3	3 7 3 4 3	0.3 2 5 <0.1 <10	12 3 12 3	11	12 3 7 12 6 6 6 6	5 7	3 3 3 3	<1 <10 <10 <5	4 3 3 12 3 12	<10 <10 <10 <10 <5 <5 <5 <5
Average		19.9		34.8		31.4		6.6		20.7						12.3		9.6				
Std Dev		5.5		3.6		7.5		1.4		4.2		- -				1.9		4.5		-		
Certified		20		35		31		7		21		(<3)		(<10)		(12)		(10)		(<10)		(<10)
t		2.26		2.26		2.26		2.26		2.23						3.18						
C(95%)		3.9		2.6		5.4		1.0		2.8						3.0						

Data in parentheses are not certified and are provided for information only.

 $C(95\%) = (t \ x \ sd)/\sqrt{n}$ The half-width confidence interval, where t is the appropriate Student's t value, sd is the interlaboratory standard deviation, and n is the number of acceptable mean values. For further information regarding the confidence interval for the certified value see ISO Guide 35:2006 section 6.

* Methods of Analysis used

1	Combustion	5	XRF Spectometry	9	Gravimetric
2	Fusion	6	Graphite Furnace Atomic Absorption Spectrometry	10	Colorimetric
3	ICP-AES	7	Flame Atomic Absorption Spectrometry	11	Photometric
4	Spark-AES	8	Titrimetric	12	ICP - Mass Spectrometry

^{*} Methods of Analysis are listed below.

Co-operating Laboratories: The co-operating laboratories were:

Laboratory

Brammer Štandard Company, Inc., Houston, TX Dirats Laboratory, Westfield, MA IMZ - Instytyt Metalurgii Zelaza, Gliwice, Poland Laboratory Testing Inc, Hatfield, PA Leco Technical Services Laboratory, St. Joseph, MI National Analysis Center Iron and Steel, Beijing, China VHG Labs, Manchester, NH A2LA - ISO 17025, ISO Guide 34 Nadcap - 17025 PCA - AB 554 Nadcap - 17025

Accredited/Registered by

Nadcap - 17025 BSI - ISO 9001 CNAS - L0272 URS - ISO 17025

Previous Laboratory Testing Program in 1996

Alpha Resources, Inc., Stevensville, Michigan Auburn Analytical Lab., Inc., Auburn, Michigan Crucible Specialty Steel, Syracuse, New York Shiva Technologies, Inc., Cicero, New York

Certification Process: The requirements of ISO Guide 31, ISO Guide 34, ISO Guide 35, and ASTM Standard Guides E 1724 were followed for the preparation of this reference material and certificate of analysis. This is a Certified Reference Material as defined by ISO Guide 30.

Analysis: Chemical analyses were made on chips prepared by a lathe from the certified portion of the discs in accordance with ASTM Standard Practice E 1806. The laboratories participating in the testing normally followed the requirements of ISO Standard 17025. Methods of analysis used were a combination of ASTM Standard Test Method E 1019 plus additional, spark-AES, ICP-AES, AA spectrometric, and classical wet chemical methods.

Traceability: The following Certified Reference Materials were used to validate the analytical data listed on page 2: NIST SRM 12g, 12h, 13g, 293, 361, 362, 363, 364, 365, 3101a, 3102a, 3107, 3109a, 3112a, 3114, 3128, 3132, 3134, 3136, 3137, 3139a, 3150, 3161a, 3162a, 3163, 3165, 3168a; ECRM 037-1, 039-2, 085-1, 184-1, 286-1; BAS BCS 345, 346, 404/2, 455/1; IMZ 1.10/1, 1.25/3, 1.4/3, 112, 119, 124, 130, 139, 153, 171; BAM 044-1; IPT 41A; JK 20A.

Homogeneity: This Reference Material was tested for homogeneity using ASTM Standard Method E 826 and found acceptable. It was also examined by spark atomic emission spectrometry using ASTM E 415 and found to be compatible with the following Reference Materials: ECRM 288-1; Brammer BS LAS1, 11A, 12, 13, 14A, 50D; CKD 165D, 170H.

Validity statement: ISO Guide 31 states that the certification should contain an expiration date for all materials where instability has been demonstrated or is considered possible, after which the certified value is no longer guaranteed by the certifying body. Whereas this material is in a solid form and stable, no expiration date is specified.

Source: The bar stock for this CRM was produced by LaSalle Steel Company in an electric arc furnace.

Form: This CRM is machined in the form of a disc, approximately 44 mm (1.75") in diameter and 19 mm (0.75") thick by Brammer Standard Company, Inc.

Use: This CRM is intended for use in spark atomic emission and x-ray spectrometric methods of analysis. Refer to ISO Guide 33 for information about the use of Reference Materials.

Certified area: The entire depth of the disc may be used.

Beau R. Brammer

Caution: As with any bar material, avoid spark atomic emission spectrometric burns in the center of the disc (5 mm radius), as some segregation may be present.

Sample Preparation: For best analytical results, use the same method for preparing the analytical surface on all reference materials as you use for production specimens. Avoid overheating the disc during surface preparation.

Certificate Number: The unique identification number for this certificate of analysis is 66L-082009-px, where x indicates the page number.

Revisions: Refer to the Brammer Standard Company website (www.brammerstandard.com) "Certificates" section for information on any revisions to this or other Brammer Standard reference materials.

Safety Notice: A Material Safety Data Sheet (MSDS) is not required for this material. This material will not release or otherwise result in exposure to a hazardous chemical, under normal conditions of use. Inquiries concerning this Reference Material should be directed to:

Brammer Standard Co., Inc. 14603 Benfer Road	Phone: (281) 440-9396	web:	www.brammerstandard.com
Houston, Texas 77069-2895 USA	Fax: (281) 440-4432	e-mail	contact@brammerstandard.com
Certified by:	on August 20, 2009		

Brammer Standard Company, Inc., is accredited to ISO Guide 34 as a Reference Material Producer for the production of Certified Reference Materials and Reference Materials by A2LA (Certificate Number 656.02)

The scope of accreditation is listed on the website: www.brammerstandard.com

Brammer Standard Company's Chemical Laboratory is accredited to ISO Standard 17025 by A2LA. (Certificate Number 656.01)

By Certificate Number 10539, the Quality System of Brammer Standard Company, Inc., is registered to ISO 9001:2000 by National Quality Assurance, U.S.A.

References:

ASTM documents available from ASTM, 1916 Race Street, Philadelphia, PA, 19103.

- E 415-08 Standard Test Method for Atomic Emission Vacuum Spectrometric Analysis of Carbon and Low-Alloy Steel
- E 826 08 Standard Practice for Testing Homogeneity of a Metal Lot or Batch in Solid Form by Spark Atomic Emission Spectrometry
- E 1019 08 Standard Test Methods for Determination of Carbon, Sulfur, Nitrogen, and Oxygen in Steel and in Iron, Nickel, and Cobalt Alloys by Various Combustion and Fusion Techniques
- E 1724 95 (Reapproved 2001) Standard Guide for Testing and Certification of Metal and Metal-Related Reference Materials
- E 1806 09 Standard Practice for Sampling Steel and Iron for Determination of Chemical Composition

ISO Guides and Standards available from Global Engineering - www.global.ihs.com

ISO Standard 17025:2005 General requirements for the competence of testing and calibration laboratories

ISO Guide 30:1992 Terms and definitions used in connection with reference materials

ISO Guide 31:2000 Reference materials -Contents of certificates and labels

ISO Guide 33:2000 Uses of certified reference materials

ISO Guide 34:2000 General requirements for the competence of reference material producers

ISO Guide 35:2006 Reference Materials - General and statistical principles for certification

Other useful documents available from NIST, U.S. Department of Commerce, Gaithersburg, MD 20899.

NIST Special Publication 260-100, Handbook for SRM Users

NIST Special Publication 829, Use of NIST Standard Reference Materials for Decisions on Performance of Analytical Chemical Methods and Laboratories