Brammer Standard Company, Inc. ## **Certificate of Analysis** B.S. 65C Reference Material for AISI Steel Grade 1117 | | Certified Value ¹ | Estimate of Uncertainty ² | | Certified Value ¹ | Estimate of Uncertainty ² | | |----|------------------------------|--------------------------------------|------------|------------------------------|--------------------------------------|--| | | | Analysis listed as percent | by weight | | | | | С | 0.150 | 0.005 | N | 0.0084 | 0.0005 | | | Mn | 1.19 | 0.02 | Sn | 0.02 | 0.006 | | | Р | 0.007 | 0.001 | V | 0.002 | 0.0005 | | | S | 0.115 | 0.005 | | | | | | Si | 0.24 | 0.02 | | | | | | Cu | 0.24 | 0.01 | Informatio | nal Values | 3 ³ | | | Ni | 0.063 | 0.003 | As | (800.0) | | | | Cr | 0.066 | 0.003 | Al | (0.002) | | | | Мо | 0.012 | 0.002 | Co | (0.007) | | | ¹ The certified value listed is the present best estimate of the true value based on the results of an interlaboratory testing program. The requirements of ISO Guide 31 and ISO Guide 35 were generally followed for the preparation of this reference material and certificate of analysis. This is a reference material as defined by ISO Guide 30. See reverse side for more information. Certificate Number 65C-081294 ² The uncertainties listed are based on value judgments of the material inhomogeneity and possible bias in the determined analytical values. No attempt is made to derive exact statistical measurements of imprecision because several methods were used in the determination of most constituents. ³ Values in parentheses are not certified and are provided for information only. | Analysis | С | Mn | P | S | Si | Cu | Ni | Cr | Мо | |---------------------------------|---|--|---|--|---|--|---|---|---| | 1
2
3
4
5
6
7 | 0.148
0.149
0.150
0.151
0.151 | 1.18
1.18
1.19
1.19
1.205
1.207 | 0.0063
0.0070
0.0077
0.0078
0.008 | 0.1112
0.112
0.114
0.114
0.115
0.116
0.118 | 0.221
0.222
0.232
0.245
0.253 | 0.234
0.236
0.236
0.238
0.243
0.249 | 0.061
0.0620
0.062
0.062
0.065
0.065 | 0.064
0.065
0.065
0.065
0.067
0.0673 | 0.0095
0.0104
0.012
0.012
0.012
0.013
0.013 | | Average | 0.1498 | 1.192 | 0.0074 | 0.1148 | 0.235 | 0.2393 | 0.0628 | 0.0656 | 0.0117 | | Std Dev | 0.0013 | 0.012 | 0.0007 | 0.0025 | 0.014 | 0.0056 | 0.0017 | 0.0013 | 0.0013 | | Certified | 0.150 | 1.19 | 0.007 | 0.115 | 0.24 | 0.24 | 0.063 | 0.066 | 0.012 | | Analysis | N | Sn | V | As | Al | Со | |-----------------------|--------------------------------------|--|------------------------------------|---------------------------|------------------------------------|--| | 1
2
3
4
5 | 0.0082
0.0083
0.0084
0.0086 | 0.0107
0.0118
0.015
0.0175
0.0213
0.023 | 0.0011
0.0017
0.002
0.002 | 0.0069
0.008
0.0081 | 0.001
0.0015
0.0018
0.002 | 0.004
0.0056
0.007
0.0072
0.0076
0.0081 | | Average | 0.0084 | 0.0166 | 0.0017 | 0.0077 | 0.0016 | 0.0066 | | Std Dev | 0.0002 | 0.0050 | 0.0004 | 0.0007 | 0.0004 | 0.0015 | | Certified | 0.0084 | 0.02 | 0.002 | (0.008) | (0.002) | (0.007) | Values in parentheses are not certified and are provided for information only. Analysis: Chemical analyses were made on chips prepared by a lathe from the certified portion of the discs. The laboratories participating in the testing normally followed the requirements of ISO Guide 25. The individual values listed above are the average of each analyst's results. Methods of analysis used were a combination of ASTM Standard Methods E 322, E 350, E 415, E 1019, plus additional ICP and AA spectrometric methods. The following Certified Reference Materials were used to validate the analytical data listed above: NIST SRM 30f, 36a, 348a, 361 - 365, 125b; JSS 003; ECRM 085-1, 088-1, 096-1, 097-1, 184-1, 481-1; BCS 405/1, 455/1, 458/1; BAM 038-1; IPT 43. Co-operating Laboratories: Some of the co-operating laboratories were: Analytical Associates Inc., Detroit, Michigan Andrew S. McCreath & Son, Inc., Harrisburg, Pennsylvania Brammer Standard Co., Inc., Houston, Texas Coleman Testing Laboratories, Riverside, New Jersey Crucible Specialty Metals, Syracuse, New York Hoesch Stahl AG, Dortmund, Germany J. Dirats and Co., Inc., Westfield, Massachusetts VHG Laboratories, Inc., Manchester, New Hampshire **Homogeneity:** This Reference Material was tested for homogeneity using ASTM Standard Practice E 826 and found acceptable. **Traceability:** This Reference Material was also examined by optical emission spectrometry and found to be compatible with the following Certified Reference Materials: NIST SRM C1173, 1261a - 1265a, 1761 - 1767; ECRM 186-1, 191-1; SS 457/1, 458/1. **Source:** This material was produced by NUCOR Cold Finish. The material was made in an electric arc furnace and billets were formed by a continuous cast procedure. The billets were hot rolled and cold finished down to 1.50 inch diameter round bars. **Available Form:** This Reference Material is available only in the form of a disc, approximately 37 mm (1.50") in diameter and 19 mm (0.75") thick. **Use:** This Reference Material is intended for use in optical emission and x-ray spectrometric methods of analysis. The entire depth of the disc may be used. **Caution:** As with any bar material, avoid optical emission spectrometric burns in the center of the disc (5 mm radius), as some segregation may be present. Sample Preparation: For best analytical results, use the same method for preparing the analytical surface on all reference materials as you use for production specimens. Avoid overheating the disc during surface preparation. **Safety Notice:** A Material Safety Data Sheet (MSDS) is not required for this material. This material will not release or otherwise result in exposure to a hazardous chemical, under normal conditions of use. Inquiries concerning this Reference Material should be directed to: | Brammer S | Standard | l Co., Inc. | | Phone: | (281) | 440-9396 | |-----------|----------|-------------|-----|--------|-------|----------| | 14603 Bei | nfer Roa | ıd | | | | | | Houston, | Texas | 77069-2895 | USA | Fax: | (281) | 440-4432 | | Certified by: | | | | on | August | 12, | 1994. | |---------------|----|----|---------|----|--------|-----|-------| | | G. | R. | Brammer | | | | | ## Referenced Documents ASTM documents available from ASTM, 1916 Race Street, Philadelphia, PA, 19103. E 322 - 67 (Reapproved 1990) Standard Method for X-Ray Emission Spectrometric Analysis of Low-Alloy Steels and Cast Irons E 350 - 90 Standard Test Methods for Chemical Analysis of Carbon Steel, Low-Alloy Steel, Silicon Electrical Steel, Ingot Iron, and Wrought Iron E 415 - 85 (Reapproved 1989) Standard Test Method for Optical Emission Vacuum Spectrometric Analysis of Carbon and Low-Alloy Steel E 826 - 85 (Reapproved 1990) Standard Practice for Testing Homogeneity of Materials for the Development of Reference Materials E 1019-93 Standard Test Methods for Determination of Carbon, Sulfur, Nitrogen, and Oxygen in Steel and in Iron, Nickel, and Cobalt Alloys ISO Guides available from American National Standards Institute, 11 West 42nd St., 13th Floor, New York, NY 10036. ISO Guide 25 (Third edition, 1990), General requirements for the competence of calibration and testing laboratories. ISO Guide 30 (Second edition, 1992), Terms and definitions used in connection with reference materials. ISO Guide 31 (First edition, 1981), Contents of certificates of reference materials. ISO Guide 33 (First edition, 1989), Uses of certified reference materials. ISO Guide 35 (Second edition, 1989), Certification of reference materials - General and statistical principles. Other useful documents available at no cost from NIST, U.S. Department of Commerce, Gaithersburg, MD 20899. NBS Special Publication 260-100, Handbook for SRM Users NIST Special Publication 829, Use of NIST Standard Reference Materials for Decisions on Performance of Analytical Chemical Methods and Laboratories